MCMC Learning

نویسندگان

  • Varun Kanade
  • Elchanan Mossel
چکیده

The theory of learning under the uniform distribution is rich and deep, with connections to cryptography, computational complexity, and the analysis of boolean functions to name a few areas. This theory however is very limited due to the fact that the uniform distribution and the corresponding Fourier basis are rarely encountered as a statistical model. A family of distributions that vastly generalizes the uniform distribution on the Boolean cube is that of distributions represented by Markov Random Fields (MRF). Markov Random Fields are one of the main tools for modeling high dimensional data in many areas of statistics and machine learning. In this paper we initiate the investigation of extending central ideas, methods and algorithms from the theory of learning under the uniform distribution to the setup of learning concepts given examples from MRF distributions. In particular, our results establish a novel connection between properties of MCMC sampling of MRFs and learning under the MRF distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle Filtered MCMC-MLE with Connections to Contrastive Divergence

Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn these models exactly, various approximate learning techniques have been developed, such as contrastive divergence (CD) and Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE). In this paper, we introduce...

متن کامل

Supervised classification using MCMC methods

This paper addresses the problem of supervised classification using general Bayesian learning. General Bayesian learning consists of estimating the unknown class-conditional densities from a set of labelled samples. However, the estimation requires to evaluate intractable multidimensional integrals. This paper studies an implementation of general Bayesian learning based on MCMC methods.

متن کامل

Cooperative Learning of Energy-Based Model and Latent Variable Model via MCMC Teaching

This paper proposes a cooperative learning algorithm to train both the undirected energy-based model and the directed latent variable model jointly. The learning algorithm interweaves the maximum likelihood algorithms for learning the two models, and each iteration consists of the following two steps: (1) Modified contrastive divergence for energy-based model: The learning of the energy-based m...

متن کامل

Stochastic Gradient MCMC with Stale Gradients

Stochastic gradient MCMC (SG-MCMC) has played an important role in largescale Bayesian learning, with well-developed theoretical convergence properties. In such applications of SG-MCMC, it is becoming increasingly popular to employ distributed systems, where stochastic gradients are computed based on some outdated parameters, yielding what are termed stale gradients. While stale gradients could...

متن کامل

Classification of chirp signals using hierarchical Bayesian learning and MCMC methods

This paper addresses the problem of classifying chirp signals using hierarchical Bayesian learning together with Markov chain Monte Carlo (MCMC) methods. Bayesian learning consists of estimating the distribution of the observed data conditional on each class from a set of training samples. Unfortunately, this estimation requires to evaluate intractable multidimensional integrals. This paper stu...

متن کامل

Learning Deep Boltzmann Machines using Adaptive MCMC

When modeling high-dimensional richly structured data, it is often the case that the distribution defined by the Deep Boltzmann Machine (DBM) has a rough energy landscape with many local minima separated by high energy barriers. The commonly used Gibbs sampler tends to get trapped in one local mode, which often results in unstable learning dynamics and leads to poor parameter estimates. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015